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◼ Solution: Neumann series

Rendering equation

𝐿 = 𝐿e + 𝑇𝐿e + 𝑇2𝐿e + 𝑇3𝐿e +…
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𝐿 = 𝐿e + 𝑇 ∘ 𝐿

𝐿 = 𝐿e + 𝑇 ∘ 𝐿



Path tracing
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Transport over many paths
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Tracing paths from the (pinhole) 
camera

renderImage() 

{

for all pixels

{

Spectrum pixelColor = (0,0,0);

for k = 1 to Np

{

wk := random direction through the pixel

pixelColor += estimateLin(cameraPosition, wk)

}

pixelColor /= Np;

writePixel(k, pixelColor);

}

}
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Tracing paths from the (pinhole) 
camera

◼ For progressive rendering, swap the loop nesting:

renderImage() 

{

for k = 1 to Np // rendering “passes”

{

for all pixels

{

Spectrum pixelColor = (0,0,0);

...
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Path tracing, v. 0.1

estimateLin (x, ω): // radiance incident at x from direction ω

y = findNearestIntersection(x, ω)

if (no intersection)

return backgroud.getLe (–ω) // emitted radiance from envmap

else

return getLe (y, –ω) + // emitted radiance (if y is on a light)

estimateLrefl (y, –ω)// reflected radiance

estimateLrefl(x, ωout):

[ωin , pdf] = genRandomDir(x, ωout); // e.g. BRDF imp. sampling

return estimateLin(x, ωin) * brdf(x, ωin, ωout) * dot(nx, ωin) / pdf
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Path Tracing – Loop version

◼ Path tracing only has tail recursion 

❑ Can be unrolled into a loop for better efficiency

◼ New feature: “Russian Roulette” for unbiased path 
termination
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estimateLin(x, omegaInAtX)  // radiance incident at “x” from the direction “omegaInAtX”

{                           //  (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

for i := 1 to maxLength // solve only first “maxLength” terms of Neumann series

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit)           // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit)          // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut)          // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit)                 // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

}

return accum;

}
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estimateLin(x, omegaInAtX)  // radiance incident at “x” from the direction “omegaInAtX”

{                           //  (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

while(1) // we don’t cut off the path length now

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit)           // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit)          // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut)          // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit)                 // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

}

return accum;

}
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estimateLin(x, omegaInAtX)  // radiance incident at “x” from the direction “omegaInAtX”

{                           //  (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

while(1) // we don’t cut off the path length now

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit)           // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit)          // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut)          // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit)                 // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

survivalProb = min(1, throughput.maxComponent())

if rand() < survivalProb // Russian Roulette – survive (reflect)

throughput /= survivalProb

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

}

return accum;

}
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estimateLin(x, omegaInAtX)  // radiance incident at “x” from the direction “omegaInAtX”

{                           //  (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

while(1) // we don’t cut off the path length now

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit)           // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit)          // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut)          // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit)                 // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

survivalProb = min(1, throughput.maxComponent())

if rand() < survivalProb // Russian Roulette – survive (reflect)

throughput /= survivalProb

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

else

break; // terminate path

}

return accum;

}
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Loop with Russian roulette
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Loop with Russian roulette
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Loop with Russian roulette
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Loop with Russian roulette
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Loop with Russian roulette
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Finish progression
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renderImage() 

{

for k = 1 to Np // rendering “passes”

{

for all pixels

{

estimateLin(x,omegaInAtX)

…



Loop with Russian roulette – path #2
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Loop with Russian roulette – path #2
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Loop with Russian roulette – path #2
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Loop with Russian roulette – path #2
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Terminating paths – Russian roulette

◼ Continue the path with probability q

◼ Multiply weight (throughput) of surviving paths by 1 / q

◼ RR is unbiased!
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Survival probability

◼ It makes sense to use the surface reflectance r as the 
survival probability

❑ If the surface reflects only 30% of light energy, 
we continue with the probability of 30%. That’s how light 
behaves in physical reality.
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Survival probability

◼ What if we cannot calculate r? Then there’s a convenient 
alternative, which in fact works even better:

1. First sample a random direction win according to pdf(win)

2. Update the path throughput

3. Use the updated throughput as the survival probability

◼ If direction sampling pdf(win) is exactly proportional to 
BRDF*cos, the above strategy turns out to be exactly 
equivalent to setting survival probability to the surface 
reflectance (prove this).
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Survival probability

◼ Our work: Adjoint-driven Russian Roulette & Splititng
[Vorba & Křivánek 2016] 

❑ Weight the survival probability by the expected path 
contribution

◼ If we enter a bright region, continue path even if throughput 
might be low

◼ If we enter a dark region, kill the path even if throughput 
might be high

❑ If the “survival probability” ends up > 1, split the path
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Adjoint-driven RR and splitting
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Vorba and Křivánek. Adjoint-Driven Russian Roulette and Splitting in 
Light Transport Simulation. ACM SIGGRAPH 2016



Path tracing, v. 0.1 – with splitting

estimateLin (x, ω): // radiance incident at x from direction ω

y = findNearestIntersection(x, ω)

if (no intersection)

return backgroud.getLe (–ω) // emitted radiance from envmap

else

return getLe (y, –ω) + // emitted radiance (if y is on a light)

estimateLrefl (y, –ω)// reflected radiance

estimateLrefl(x, ωout):

accum := 0

N := computeSplit(x); // number of “new“ split paths

for i = 1 to N

[ωin , pdf] = genRandomDir(x, ωout); // e.g. BRDF imp. sampling

accum += estimateLin(x, ωin) * brdf(x, ωin, ωout) * dot(nx, ωin) / pdf;

return accum / N;                                                // average the split contributions
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◼ In case of fixed rate N

❑ Nd where d is path length

Beware of exponential branching!
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estimateLin(x, omegaInAtX)  // radiance incident at “x” from the direction “omegaInAtX”

{                           //  (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

while(1)

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit)           // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit)          // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut)          // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit)                 // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

survivalProb = min(1, throughput.maxComponent())

if rand() < survivalProb // Russian Roulette – survive (reflect)

throughput /= survivalProb

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

else // terminate the path – break the while loop

break;

}

return accum;

}
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◼ We usually sample the direction win from a pdf similar to

fr(x, win → wout) cos qin

◼ Ideally, we would want to sample proportionally to the 
integrand itself

Lin(x, win) fr(x, win → wout) cos qi, 

but this is difficult, because we do not know Lin upfront.
With some precomputation, it is possible to use a rough 
estimate of Lin  for sampling [Jensen 95, Vorba et al. 
2014]. This is called “path guiding”.
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Direction sampling – genRandomDir()



Path guiding

Vorba, Karlík, Šik, Ritschel, and Křivánek. On-line Learning of Parametric 
Mixture Models for Light Transport Simulation. ACM SIGGRAPH 2014



Path guiding

Vorba, Karlík, Šik, Ritschel, and Křivánek. On-line Learning of Parametric 
Mixture Models for Light Transport Simulation. ACM SIGGRAPH 2014



Direct illumination calculation 
in a path tracer



So far: accumulate TiLe
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Now: at every vertex

Advanced 3D Graphics (NPGR010) - J. Vorba 2020



Direct illumination
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◼ At each path vertex, we are calculating direct 
illumination

❑ i.e. radiance reflected from the surface point exclusively due 
to the light coming directly from the light sources



Direct illumination: Two strategies
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◼ At each path vertex, we are calculating direct 
illumination

❑ i.e. radiance reflected from the surface point exclusively due 
to the light coming directly from the light sources

◼ Two sampling strategies

1. Explicit light source sampling (NEE)
(“next event estimation”)

2. BRDF-proportional sampling
(already in the above code)



Two strategies at every vertex
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The use of MIS in a path tracer

◼ At each path vertex do both:

❑ Explicit light source sampling

◼ Generate point on light source & cast shadow ray

❑ BRDF-proportional sampling 

◼ One ray can be shared for the calculation of both direct and 
indirect illumination

◼ But the MIS weight is applied only on the direct term 
(indirect illumination is added unweighted because there is no 
alternative technique to calculate it)
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Direct illumination: formulas

◼ Look into the previous lecture on MIS.

❑ MIS, two forms of reflection equation and its estimators
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NEE - multiple light sources

◼ Option 1:

1. Loop over all sources and send a shadow ray to each one

◼ Option 2:

1. Choose one source at random

2. Sample illumination only on the chosen light, divide the 
result by the prob of picking that light

❑ (Scales better with many sources but has higher variance 
per path)

◼ Beware: The probability of choosing a light influences 
the sampling pds and therefore also the MIS weights.
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Option 1 – Sum all contributions

Spectrum accum(0);

// Loop over all “Nl” lights

for i := 1 to Nl

{

// Estimate reflected radiance at “x” into “omegaOut” 

// due to light i

accum += estimateReflLoDirect(x, omegaOut, lights[i]);

}
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Option 2 – Stochastic sampling

// Construct probability mass function (aka discrete pdf)

// over all lights with respect to shading position “x”  

// and outgoing direction “omegaOut”

pmf := constructPmf(x,omegaOut,lights);

// Select light “i” with probability “pmf[i]”

i := pmf.sampleIndex();

// Estimate reflected radiance at “x” into “omegaOut” 

// due to light i

Spectrum accum = 

estimateReflLoDirect(x, omegaOut, lights[i]) / pmf[i];
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Option 2 – Choice of PMF

◼ Naive

❑ Uniform

❑ Proportional to power

◼ Example: Equal area, same orientation, same power

❑ Q: Why are the above not optimal?

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

x

𝑙1

𝑙2



Option 2 – Choice of PMF

◼ Naive

❑ Uniform

❑ Proportional to power

◼ Ideal

❑ Proportional to light contribution with respect to x (and 𝜔𝑜)
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Efficient many-light methods

◼ Problem: thousands of lights
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Source: Vevoda et al. 2018
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Efficient many-light methods

◼ Problem: thousands of lights

◼ Ideal pmf depends on

❑ Position

❑ Orientation

❑ Distance

❑ Power

❑ Visibility
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Source: Estevez et Kulla 2018



Efficient many-light methods

◼ Typical approach

1. Build a light hierarchy (preprocess)

2. Construct a tree cut given position x (rendering)
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Build a light hierarchy

◼ Cluster based on position, orientation

◼ Compute bounds for each node (spatial, directional)
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Construct a tree cut given position x

◼ Usually based on un-occluded contributions

◼ Gives us our pmf
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Learning the lights’ contributions

Before (no learning)

Vévoda, Kondapaneni, Křivánek. Bayesian online regression for 
adaptive direct illumination sampling. ACM SIGGRAPH 2018



Learning the lights’ contributions

After (with learning)

Vévoda, Kondapaneni, Křivánek. Bayesian online regression for 
adaptive direct illumination sampling. ACM SIGGRAPH 2018



Misc
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Typical numbers of rays cast in the 
scene

◼ Consider 2K image (2M pixels)

◼ Per progression

❑ 2M primary rays 

❑ (2M shadow rays + 2M) * “average path length”

❑ NEE shadow rays (cheaper - early exit, unless we consider 
transparent surfaces)

◼ Progressions (aka samples or paths per pixel)

❑ Typically a few hundreds (with good importance sampling)

◼ Highly scene dependent!!

◼ Depends also on the algorithm (Russian roulette,
splitting…)
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Summary

◼ Pathtracer with next-event estimation

◼ Core of the most production renderers
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What we have not covered

◼ Adaptive image plane sampling

❑ Equalizes error over pixels

❑ Essential for movie production (and offline rendering)

◼ Denoising

❑ Essential for both movies 
and ray-traced games 
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