
Advanced 3D graphics for movies and
games (NPGR010)

– Path tracing

Jiří Vorba, MFF UK/Weta Digital

jirka@cgg.mff.cuni.cz

Slides by prof. Jaroslav Křivánek, extended by Jiří Vorba

mailto:jirka@cgg.mff.cuni.cz

◼ Solution: Neumann series

Rendering equation

𝐿 = 𝐿e + 𝑇𝐿e + 𝑇2𝐿e + 𝑇3𝐿e +…

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

𝐿 = 𝐿e + 𝑇 ∘ 𝐿

𝐿 = 𝐿e + 𝑇 ∘ 𝐿

Path tracing

Advanced 3D Graphics (NPGR010) - J.

Vorba 2020

Transport over many paths

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Tracing paths from the (pinhole)
camera

renderImage()

{

for all pixels

{

Spectrum pixelColor = (0,0,0);

for k = 1 to Np

{

wk := random direction through the pixel

pixelColor += estimateLin(cameraPosition, wk)

}

pixelColor /= Np;

writePixel(k, pixelColor);

}

}

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Tracing paths from the (pinhole)
camera

◼ For progressive rendering, swap the loop nesting:

renderImage()

{

for k = 1 to Np // rendering “passes”

{

for all pixels

{

Spectrum pixelColor = (0,0,0);

...

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Path tracing, v. 0.1

estimateLin (x, ω): // radiance incident at x from direction ω

y = findNearestIntersection(x, ω)

if (no intersection)

return backgroud.getLe (–ω) // emitted radiance from envmap

else

return getLe (y, –ω) + // emitted radiance (if y is on a light)

estimateLrefl (y, –ω)// reflected radiance

estimateLrefl(x, ωout):

[ωin , pdf] = genRandomDir(x, ωout); // e.g. BRDF imp. sampling

return estimateLin(x, ωin) * brdf(x, ωin, ωout) * dot(nx, ωin) / pdf

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Path Tracing – Loop version

◼ Path tracing only has tail recursion

❑ Can be unrolled into a loop for better efficiency

◼ New feature: “Russian Roulette” for unbiased path
termination

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

𝐿 =

𝑖=0

𝑀

𝑇𝑖𝐿e 𝐿 =

𝑖=0

∞

𝑇𝑖𝐿e

estimateLin(x, omegaInAtX) // radiance incident at “x” from the direction “omegaInAtX”

{ // (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

for i := 1 to maxLength // solve only first “maxLength” terms of Neumann series

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit) // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit) // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut) // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit) // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

}

return accum;

}

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

estimateLin(x, omegaInAtX) // radiance incident at “x” from the direction “omegaInAtX”

{ // (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

while(1) // we don’t cut off the path length now

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit) // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit) // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut) // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit) // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

}

return accum;

}

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

estimateLin(x, omegaInAtX) // radiance incident at “x” from the direction “omegaInAtX”

{ // (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

while(1) // we don’t cut off the path length now

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit) // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit) // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut) // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit) // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

survivalProb = min(1, throughput.maxComponent())

if rand() < survivalProb // Russian Roulette – survive (reflect)

throughput /= survivalProb

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

}

return accum;

}

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

estimateLin(x, omegaInAtX) // radiance incident at “x” from the direction “omegaInAtX”

{ // (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

while(1) // we don’t cut off the path length now

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit) // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit) // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut) // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit) // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

survivalProb = min(1, throughput.maxComponent())

if rand() < survivalProb // Russian Roulette – survive (reflect)

throughput /= survivalProb

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

else

break; // terminate path

}

return accum;

}

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Loop with Russian roulette

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Loop with Russian roulette

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Loop with Russian roulette

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Loop with Russian roulette

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Loop with Russian roulette

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Finish progression

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

renderImage()

{

for k = 1 to Np // rendering “passes”

{

for all pixels

{

estimateLin(x,omegaInAtX)

…

Loop with Russian roulette – path #2

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Loop with Russian roulette – path #2

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Loop with Russian roulette – path #2

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Loop with Russian roulette – path #2

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Terminating paths – Russian roulette

◼ Continue the path with probability q

◼ Multiply weight (throughput) of surviving paths by 1 / q

◼ RR is unbiased!

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

=
otherwise0

 if/ qqY
Z

][
1

1
0

][
][YE

q
q

q

YE
ZE =

−
+=

Survival probability

◼ It makes sense to use the surface reflectance r as the
survival probability

❑ If the surface reflects only 30% of light energy,
we continue with the probability of 30%. That’s how light
behaves in physical reality.

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Survival probability

◼ What if we cannot calculate r? Then there’s a convenient
alternative, which in fact works even better:

1. First sample a random direction win according to pdf(win)

2. Update the path throughput

3. Use the updated throughput as the survival probability

◼ If direction sampling pdf(win) is exactly proportional to
BRDF*cos, the above strategy turns out to be exactly
equivalent to setting survival probability to the surface
reflectance (prove this).

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Survival probability

◼ Our work: Adjoint-driven Russian Roulette & Splititng
[Vorba & Křivánek 2016]

❑ Weight the survival probability by the expected path
contribution

◼ If we enter a bright region, continue path even if throughput
might be low

◼ If we enter a dark region, kill the path even if throughput
might be high

❑ If the “survival probability” ends up > 1, split the path

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Adjoint-driven RR and splitting

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Vorba and Křivánek. Adjoint-Driven Russian Roulette and Splitting in
Light Transport Simulation. ACM SIGGRAPH 2016

Path tracing, v. 0.1 – with splitting

estimateLin (x, ω): // radiance incident at x from direction ω

y = findNearestIntersection(x, ω)

if (no intersection)

return backgroud.getLe (–ω) // emitted radiance from envmap

else

return getLe (y, –ω) + // emitted radiance (if y is on a light)

estimateLrefl (y, –ω)// reflected radiance

estimateLrefl(x, ωout):

accum := 0

N := computeSplit(x); // number of “new“ split paths

for i = 1 to N

[ωin , pdf] = genRandomDir(x, ωout); // e.g. BRDF imp. sampling

accum += estimateLin(x, ωin) * brdf(x, ωin, ωout) * dot(nx, ωin) / pdf;

return accum / N; // average the split contributions

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

◼ In case of fixed rate N

❑ Nd where d is path length

Beware of exponential branching!

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

estimateLin(x, omegaInAtX) // radiance incident at “x” from the direction “omegaInAtX”

{ // (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

while(1)

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit) // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit) // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut) // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit) // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

survivalProb = min(1, throughput.maxComponent())

if rand() < survivalProb // Russian Roulette – survive (reflect)

throughput /= survivalProb

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

else // terminate the path – break the while loop

break;

}

return accum;

}

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

◼ We usually sample the direction win from a pdf similar to

fr(x, win → wout) cos qin

◼ Ideally, we would want to sample proportionally to the
integrand itself

Lin(x, win) fr(x, win → wout) cos qi,

but this is difficult, because we do not know Lin upfront.
With some precomputation, it is possible to use a rough
estimate of Lin for sampling [Jensen 95, Vorba et al.
2014]. This is called “path guiding”.

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Direction sampling – genRandomDir()

Path guiding

Vorba, Karlík, Šik, Ritschel, and Křivánek. On-line Learning of Parametric
Mixture Models for Light Transport Simulation. ACM SIGGRAPH 2014

Path guiding

Vorba, Karlík, Šik, Ritschel, and Křivánek. On-line Learning of Parametric
Mixture Models for Light Transport Simulation. ACM SIGGRAPH 2014

Direct illumination calculation
in a path tracer

So far: accumulate TiLe

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Now: at every vertex

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Direct illumination

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

◼ At each path vertex, we are calculating direct
illumination

❑ i.e. radiance reflected from the surface point exclusively due
to the light coming directly from the light sources

Direct illumination: Two strategies

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

◼ At each path vertex, we are calculating direct
illumination

❑ i.e. radiance reflected from the surface point exclusively due
to the light coming directly from the light sources

◼ Two sampling strategies

1. Explicit light source sampling (NEE)
(“next event estimation”)

2. BRDF-proportional sampling
(already in the above code)

Two strategies at every vertex

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

x1

x2

The use of MIS in a path tracer

◼ At each path vertex do both:

❑ Explicit light source sampling

◼ Generate point on light source & cast shadow ray

❑ BRDF-proportional sampling

◼ One ray can be shared for the calculation of both direct and
indirect illumination

◼ But the MIS weight is applied only on the direct term
(indirect illumination is added unweighted because there is no
alternative technique to calculate it)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Direct illumination: formulas

◼ Look into the previous lecture on MIS.

❑ MIS, two forms of reflection equation and its estimators

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

NEE - multiple light sources

◼ Option 1:

1. Loop over all sources and send a shadow ray to each one

◼ Option 2:

1. Choose one source at random

2. Sample illumination only on the chosen light, divide the
result by the prob of picking that light

❑ (Scales better with many sources but has higher variance
per path)

◼ Beware: The probability of choosing a light influences
the sampling pds and therefore also the MIS weights.

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Option 1 – Sum all contributions

Spectrum accum(0);

// Loop over all “Nl” lights

for i := 1 to Nl

{

// Estimate reflected radiance at “x” into “omegaOut”

// due to light i

accum += estimateReflLoDirect(x, omegaOut, lights[i]);

}

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Option 2 – Stochastic sampling

// Construct probability mass function (aka discrete pdf)

// over all lights with respect to shading position “x”

// and outgoing direction “omegaOut”

pmf := constructPmf(x,omegaOut,lights);

// Select light “i” with probability “pmf[i]”

i := pmf.sampleIndex();

// Estimate reflected radiance at “x” into “omegaOut”

// due to light i

Spectrum accum =

estimateReflLoDirect(x, omegaOut, lights[i]) / pmf[i];

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Option 2 – Choice of PMF

◼ Naive

❑ Uniform

❑ Proportional to power

◼ Example: Equal area, same orientation, same power

❑ Q: Why are the above not optimal?

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

x

𝑙1

𝑙2

Option 2 – Choice of PMF

◼ Naive

❑ Uniform

❑ Proportional to power

◼ Ideal

❑ Proportional to light contribution with respect to x (and 𝜔𝑜)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

x2

x1

𝑙1

𝑙2

Efficient many-light methods

◼ Problem: thousands of lights

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Source: Vevoda et al. 2018

Source: Estevez et Kulla 2018

Efficient many-light methods

◼ Problem: thousands of lights

◼ Ideal pmf depends on

❑ Position

❑ Orientation

❑ Distance

❑ Power

❑ Visibility

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Source: Estevez et Kulla 2018

Efficient many-light methods

◼ Typical approach

1. Build a light hierarchy (preprocess)

2. Construct a tree cut given position x (rendering)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Build a light hierarchy

◼ Cluster based on position, orientation

◼ Compute bounds for each node (spatial, directional)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

S
o
u
r
c
e
:

E
s
t
e
v
e
z

e
t

K
u
l
l
a

2
0
1
8

Construct a tree cut given position x

◼ Usually based on un-occluded contributions

◼ Gives us our pmf

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

S
o
u
r
c
e
:

E
s
t
e
v
e
z

e
t

K
u
l
l
a

2
0
1
8

Learning the lights’ contributions

Before (no learning)

Vévoda, Kondapaneni, Křivánek. Bayesian online regression for
adaptive direct illumination sampling. ACM SIGGRAPH 2018

Learning the lights’ contributions

After (with learning)

Vévoda, Kondapaneni, Křivánek. Bayesian online regression for
adaptive direct illumination sampling. ACM SIGGRAPH 2018

Misc

Advanced 3D Graphics (NPGR010) - J.

Vorba 2020

Typical numbers of rays cast in the
scene

◼ Consider 2K image (2M pixels)

◼ Per progression

❑ 2M primary rays

❑ (2M shadow rays + 2M) * “average path length”

❑ NEE shadow rays (cheaper - early exit, unless we consider
transparent surfaces)

◼ Progressions (aka samples or paths per pixel)

❑ Typically a few hundreds (with good importance sampling)

◼ Highly scene dependent!!

◼ Depends also on the algorithm (Russian roulette,
splitting…)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Summary

◼ Pathtracer with next-event estimation

◼ Core of the most production renderers

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

What we have not covered

◼ Adaptive image plane sampling

❑ Equalizes error over pixels

❑ Essential for movie production (and offline rendering)

◼ Denoising

❑ Essential for both movies
and ray-traced games

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

